

Carbohydrate Research 337 (2002) 1523–1527

CARBOHYDRATE RESEARCH

www.elsevier.com/locate/carres

Stereoselective synthesis of a C-glycosylic compound (a "methyl C-glycoside") through a regioselective free-radical ring-opening reaction. A single-crystal X-ray structure determination

Bhagavathy Shanmugasundaram, Babu Varghese, Kalpattu K. Balasubramanian A.*

^aDepartment of Chemistry, Indian Institute of Technology, Madras, Chennai 600 036, India ^bRegional Sophisticated Instrumentation Centre, Indian Institute of Technology, Madras, Chennai 600 036, India

Received 7 February 2002; accepted 8 June 2002

Abstract

Readily available 3,4,6-tri-O-acetyl-D-glucal was converted to 2,6-anhydro-5,7-O-benzylidene-1,3,4-trideoxy-D-a-arabino-hept-3-enitol, a methyl C-glycosylic compound. Cyclopropanation of 4,6-O-benzylidene-D-glucal, followed by tributylstannyl radical-mediated regioselective ring opening of the 1,2-cyclopropano sugar led to a 2,6-anhydro-1-deoxyheptose, (a "methyl C-B-D-glycoside"). The stereochemistry of the 1,2-cyclopropano sugar and the "methyl C-glycoside" were confirmed by single-crystal X-ray diffraction studies. © 2002 Elsevier Science Ltd. All rights reserved.

Keywords: C-Glycoside; 1,2-Cyclopropanated sugar; Radical ring opening; Single-crystal X-ray diffraction

C-Glycosylic compounds, frequently referred to as "C-glycosides", are a class of compounds that continue to receive attention in carbohydrate and synthetic organic chemistry. Some of the total syntheses of biologically important macromolecules have been achieved using C-glycosides as chiral building blocks. Hence, efficient and stereocontrolled methods for the synthesis of C-glycosides and obtaining chiral templates for more complex synthetic targets constitute major challenges in this area. ²

Our laboratory has earlier reported the synthesis of unsaturated aryl *C*-glycosides and other aryl *C*-deoxyglycosides.³ An ongoing research project in this area in our laboratory is the development of new methodology for the synthesis of alkyl *C*-glycosides. Because of the attendant problems in regio- and stereoselectivity (observed especially at the anomeric centre of sugars), free-radical reactions have been increasingly employed in organic synthesis.⁴ Unsaturated sugars, in particular

3,4,6-tri-*O*-acetyl-D-glucal, have found widespread use as carbohydrate synthons.⁵

Cyclopropanation of appropriately protected glycals paves the way for the introduction of alkyl groups at either C-1 or C-2 of the pyranose ring. Several methodologies have been employed in the last decade for stereocontrolled cyclopropanation in carbohydrates.⁶ Although several reactions are known for solvolytic⁷ and electrophilic ring opening,⁸ there are only a few reports on the free-radical ring-opening of cyclopropanated sugars.⁹

Herein, we report a different approach for synthesis of a *C*-β-D-glycoside via tri-(*n*-butyl)stannyl radical-mediated ring opening of a 1,5-anhydro-1,2-cyclo-propylcarbinyl-2-deoxyhexitol system.¹⁰ 3,4,6-Tri-*O*-acetyl-D-glucal (1) was converted to 4,6-*O*-benzylidene-D-glucal¹¹ (2) using benzaldehyde dimethylacetal.

Diastereoselective cyclopropanation of **2** was carried out using the Simmons–Smith reaction to furnish 1,5-anhydro-4,6-*O*-benzylidene-2-deoxy-1,2-*C*-methylene-D-glycero-D-talo-hexitol (**3**) (Scheme 1). Although ¹H NMR spectral data showed the presence of the cyclopropane ring, the stereochemistry at the bicyclic ring junction still required confirmation.

^{*} Corresponding author. Tel.: +91-44-2451106; fax: +91-44-2452462

E-mail address: kkbalu@hotmail.com (K.K. Balasubramanian).

The resulting cyclopropylcarbinol 3 was converted to 1,5-anhydro-4,6-O-benzylidene-2-deoxy-1,2-C-methylene-3-O-xanthyl-D-glycero-D-talo-hexitol (4) (Scheme 2) whose NMR spectrum revealed unexpected results. The H-3 [(C-11 as depicted in the ORTEP diagram (Fig. 1)] of 4 at δ 6.16 appeared as a triplet ($J_{2,3} = J_{3,4}$ 11.5 Hz), thus providing no information as to the configuration at C-1 and C-3. Proof for the stereochemistry of the xanthate derivative 4 was obtained by single-crystal X-ray diffraction study (Fig. 1).

The observed stereoselectivity in **4**, based on the X-ray diffraction analysis, is consistent with an oxygendirected (allylic 3-OH) Simmons–Smith cyclopropanation, while cyclopropanation of 3,4,6-tri-*O*-benzyl-D-glucal using dichlorocarbene is reported to lead to a product with opposite stereochemistry. ¹² A summary of the crystallographic data is provided in Table 1, and the selected atomic parameters are shown in Tables 2 and 3.

Free-radical ring-opening reaction of 4 using the standard Barton radical deoxygenation conditions with

Scheme 1. Conditions: (a) (i) Na_2CO_3 , MeOH, (ii) Ph-CH(OMe)₂, p-TsOH, DMF; (b) Zn-Cu, CH_2I_2 , Et_2O (45% overall).

$$3 \xrightarrow{a} \xrightarrow{Ph} \overset{O}{\underset{OC(S)SMe}{\bigvee}} \xrightarrow{b} \overset{Ph}{\underset{H}{\underset{O}{\bigvee}}} \overset{CH_3}{\underset{H}{\underset{O}{\bigvee}}}$$

Scheme 2. Conditions: (a) NaH, CS₂, MeI, THF, 90% (b) Bu₃SnH, AIBN, toluene, reflux, 80%.

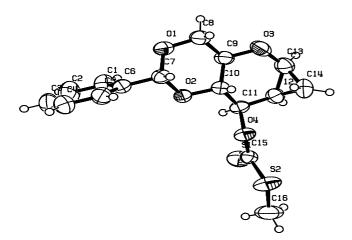


Fig. 1. ORTEP diagram of 1,5-anhydro-4,6-*O*-benzylidine-2-deoxy-1,2-C-methylene-3-*O*-xanthyl-D-*glycero*-D-*talo*-hexitol (4).

Table 1 Summary of crystal data and data collection parameters for 1,5-anhydro-4,6-*O*-benzylidine-2-deoxy-1,2-*C*-methylene-3-*O*-xanthyl-D-*glycero*-D-*talo*-hexitol (4) and for 2,5-anhydro-5,7-*O*-benzylidene-1,3,4-dideoxy-β-D-*arabino*-hex-3-enitol (5)

Chemical formula	$C_{16}H_{18}O_4S_2$ (4)	$C_{14}H_{16}O_3$ (5)
Formula weight	338.42	232.27
Crystal system	monoclinic	monoclinic
Space group	$P2_1$	$P2_1$
Temperature (K)	293(2)	293 (2)
Wavelength (Å)	1.54160	1.54180
Lattice parameters		
$a(\mathring{A})$	6.4107(9)	9.437(3)
$b(\mathring{A})$	13.991(3)	5.5107(10)
$c(\mathring{A})$	9.2746(2)	23.852(3)
β (°)	95.92(2)	90.110(16)
$V(\mathring{A}^3)$	827.43(19)	1240.5(5)
Z	2	4
$D_{\rm calcd}~({\rm mg~m^{-3}})$	1.358	1.244
Absorption coefficient (mm ⁻¹)	3.047	0.703
F(000)	356	496
$\mu \text{ (mm}^{-1})$	3.047	0.703
Index ranges	$0 \le h \le 7$,	$0 \le h \le 10$,
C	$0 \le k \le 16$,	$0 \le k \le 6$,
	$-11 \le l \le 11$	$-28 \le l \le 28$
Crystal size (mm)	0.25×0.1	$0.3 \times 0.15 \times 0.15$
` ` `	$\times 0.075$	
Measured data	1628	2758
Unique data	1489	2437
Parameters	220	308
Restraints	1	1
R (all data)	0.0451	0.0614
wR_2	0.1230	0.1704
Goodness-of-fit	1.063	1.136
Mean and maximum shift/esd	0.002-0.000	0.002-0.000
Maximum and minimum difference electron density (e \mathring{A}^{-3})	0.253, -0.461	0.355, -0.269

Bu₃SnH afforded exclusively the 2,6-anhydro-5,7-O-benzylidene-1,3,4-trideoxy- β -D-arabino-hept-3-enitol (5). NMR (1 H, NOE and COSY) spectral studies established the anomeric configuration as β -D.

As expected the free-radical ring opening of 4 stereospecifically afforded the β anomer of the *C*-glucoside 5 with no trace of the seven-membered (i.e., the cyclopropane ring-opened) product. We have established also the stereochemistry of 5 by X-ray crystallographic analysis. Crystallographically 5 shows two nonequivalent molecules in the asymmetric unit. However, stereochemically both the molecules are found to

[†] Ref. 10 reports both the ring opened and ring expanded products in the ratio of 3:2, respectively, in the case of a 4,5-cyclopropanated sugar.

be identical, hence only one of the molecule is represented in the ORTEP diagram (Fig. 2).

The present study provides a potential route for the stereoselective synthesis of *C*-glycosides. Research is underway to extend this approach to the stereoselective synthesis of other *C*-glycosides.

1. Experimental

General procedure.—IR spectra were determined as their solutions in CCl₄ using a SHIMADZU IR 470 model instrument. ¹H and ¹³C NMR spectra were recorded on a JOEL-GSX 400 spectrometer with CDCl₃ as solvent and Me₄Si as internal standard. Electron-impact mass spectra (EIMS) were obtained with a SHIMADZU-QP 5000 instrument.

1,5-Anhydro-4,6-O-benzylidene-2-deoxy-1,2-C-methylene-D-glycero-D-talo-hexitol (3).—To a stirred suspension of zinc dust (420 mg, 4.4 mmol) and CuCl (135 mg, 1 mmol) in dry ether (3 mL) was added CH_2I_2 (0.12 mL, 1.5 mmol), followed by acetyl chloride (20 μ L). Then a solution of 4,6-O-benzylidene-D-glucal (350 mg, 1.5 mmol) in ether (5mL) was added, and the mixture was heated under reflux. After 5 min CH_2I_2 (0.12 mL, 1.5 mmol) was again added, and heating was continued for 45 min. The reaction mixture was diluted with ether

Table 2 Atomic coordinates (\times 10⁴) and equivalent isotropic displacement parameters (Å²×10³) for 1,5-anhydro-4,6-O-benzylidine-2-deoxy-1,2-C-methylene-3-O-xanthyl-D-glycero-D-tal o-hexitol (4)

	X	у	Z	$U_{ m eq}$
S(1)	-147(2)	4762(1)	2999(1)	69(1)
S(2)	-4385(2)	4067(1)	1720(2)	77(1)
O(1)	3044(6)	5105(2)	-3616(4)	63(1)
O(2)	1372(4)	4505(2)	-1691(3)	44(1)
O(3)	-122(6)	6998(3)	-2313(4)	67(1)
O(4)	-1850(4)	4832(2)	277(3)	49(1)
C(1)	5208(8)	3473(5)	-2347(6)	71(2)
C(2)	6426(11)	2668(6)	-2350(8)	96(2)
C(3)	5727(12)	1861(6)	-3080(8)	91(2)
C(4)	3783(12)	1855(5)	-3837(8)	85(2)
C(5)	2524(9)	2660(4)	-3858(6)	64(1)
C(6)	3198(7)	3458(3)	-3116(4)	48(1)
C(7)	1891(7)	4339(3)	-3128(4)	47(1)
C(8)	1903(10)	5975(4)	-3664(5)	66(1)
C(9)	1243(7)	6197(3)	-2172(5)	51(1)
C(10)	119(6)	5348(3)	-1628(4)	41(1)
C(11)	-270(6)	5515(3)	-88(4)	43(1)
C(12)	-1028(7)	6512(3)	162(5)	53(1)
C(13)	-873(9)	7257(4)	-1003(6)	62(1)
C(14)	-2973(9)	6876(5)	-728(8)	77(2)
C(15)	-1955(6)	4593(3)	1662(4)	47(1)
C(16)	-4343(13)	3712(5)	3553(8)	99(2)

Table 3 Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters ($\mathring{A}^2 \times 10^3$) for 2,5-anhydro-5,7-*O*-benzylidene-1,3,4-dideoxy-β-D-*arabino*-hex-3-enitol (**5**)

	X	y	Z	$U_{ m eq}$
O(1')	3674(3)	10243(7)	4537(1)	59(1)
O(2')	5777(3)	6837(6)	3545(1)	56(1)
O(3')	7285(3)	9386(6)	4048(1)	56(1)
C(1')	2326(5)	10347(12)	4247(2)	68(1)
C(2')	2196(6)	8486(12)	3813(2)	78(2)
C(3')	3286(5)	6984(10)	3649(2)	63(1)
C(4')	4647(4)	7256(9)	3928(2)	52(1)
C(5')	4795(4)	9821(8)	4164(2)	50(1)
C(6')	6205(4)	10038(10)	4446(2)	57(1)
C(7')	1203(5)	10073(17)	4662(2)	93(2)
C(8')	7092(4)	7071(9)	3821(2)	51(1)
C(9')	8229(4)	6589(9)	3399(2)	52(1)
C(10')	9062(5)	4434(11)	3414(2)	68(1)
C(11')	10086(6)	4103(11)	3009(3)	83(2)
C(12')	10279(6)	5660(11)	2589(2)	75(2)
C(13')	9450(6)	7735(12)	2567(2)	74(2)
C(14')	8460(5)	8136(10)	2962(2)	64(1)
O(1)	-1326(3)	-1373(6)	459(1)	54(1)
O(2)	789(3)	2053(5)	1461(1)	48(1)
O(3)	2295(3)	-533(6)	950(1)	48(1)
C(1)	-2680(4)	-1458(10)	754(2)	60(1)
C(2)	-2782(5)	430(10)	1193(2)	63(1)
C(3)	-1739(4)	1860(10)	1356(2)	60(1)
C(4)	-350(4)	1633(8)	1069(2)	47(1)
C(5)	-189(4)	-913(8)	845(1)	43(1)
C(6)	1220(4)	-1129(9)	551(2)	51(1)
C(7)	-3819(5)	-1272(18)	310(2)	96(2)
C(8)	2116(4)	1867(7)	1187(1)	43(1)
C(9)	3254(4)	2319(8)	1603(2)	45(1)
C(10)	4070(5)	4399(10)	1577(2)	60(1)
C(11)	5115(5)	4798(10)	1980(2)	72(1)
C(12)	5324(5)	3254(12)	2402(2)	73(2)
C(13)	4514(5)	1153(13)	2441(2)	73(2)
C(14)	3476(5)	694(10)	2041(2)	59(1)



Fig. 2. ORTEP diagram of 2,5-anhydro-5,7-*O*-benzylidene-1,3,4-dideoxy-β-D-*arabino*-hex-3-enitol (**5**).

and washed with 5% NaOH, followed by water. Column chromatography of the crude product using 3:2 EtOAc–hexane yielded 285 mg (75%); mp 133–135 °C; $[\alpha]_D^{30}$ – 82.7° (c 0.719, CH₂Cl₂); IR cm⁻¹): 3600, 3008, 2928, 2896, 1452, 1379, 1286, 1091, 1030, 966, 872, 598; ¹H NMR: δ 0.77–0.85 (m, 2 H, H-7), 1.34 (dd, 1 H, H-2), 2.77 (bs, 1 H, OH), 3.25–3.5 (m, 3 H, H-4, 5, 1), 3.7 (m, 1 H, H-3), 4.22 (m, 2 H, H-6a, 6b), 5.39 (s, 1 H, benzylidene H), 7.2–7.4 (m, 5 H, Ph); ¹³C NMR: δ 11.9, 17.61, 54.5, 67.94, 68.53, 68.59, 82.08, 96.19, 101.58, 128.30, 128.20, 129.08, 137.34; EIMS: Anal. Calcd for C₁₄H₁₆O₄, 248.27; Found: m/z 247 [M – 1], 149, 107, 91, 77, 55.

1,5-Anhydro-4,6-O-benzylidene-2-deoxy-1,2-C-methylene-3-O-xanthyl-D-glycero-D-talo-hexitol (4).—It is important to note that the reaction has to be conducted under a perfectly dry argon atmosphere for good yields. To a solution of 3 (200 mg, 0.8 mmol) in dry THF (10 mL) was added NaH (60 mg, 50% oil dispersion, 1.2 mmol) under dry argon atmosphere, and the mixture was stirred at rt for 1 h. CS₂ (0.14 mL, 2.4 mmol) and a catalytic amount of imidazole (10 mg) was then added, and stirring was continued for 30 min, followed by the addition of MeI (0.1 mL, 2 mmol). After 30 min the reaction was quenched with MeOH. The solvents were evaporated under vacuum, and the reaction mixture was worked up by extracting with CH₂Cl₂. Column chromatography of the crude product using 4:1 EtOAc-hexane yielded 245 mg (90%) of 4. Recrystallization of the product using 1:9 EtOAc-CCl₄ gave single crystals: mp 147–149 °C; $[\alpha]_D^{30}$ – 180.5° (c 0.886, CH_2Cl_2); IR (cm⁻¹): 3024, 2992, 2944, 2880, 1452, 1408, 1376, 1235, 1203, 1129, 1049, 915, 694; ¹H NMR: δ 0.90 (m, 2 H, H-7), 2.00 (m, 1 H, H-2), 2.5 (s, 3 H, -SMe₃), 3.2-3.9 (m, 3 H, H-5, 6a, 6b), 4.3 (bs, 1 H, H-4), 5.5 (s, 1 H, benzylidene H), 6.16 (t, 1 H, H-3, $J_{2,3} = J_{3,4}$ 11.5 Hz), 7.2–7.4 (m, 5 H, Ph–); ¹³C NMR: δ 12.49, 15.12, 19.18, 55.69, 68/6, 76.36, 77.63, 78.76, 79.92, 101.36, 126.13, 128.17, 129.03, 137.04; EIMS: Anal. Calcd for $C_{14}H_{18}O_4S_2$, 338.06; Found: m/z 338, 277, 231, 125, 107, 91, 81, 67.

2,6-Anhydro-5,7-O-benzylidene-1,3,4-trideoxy-D-arabino-hept-3-enitol (5).—About 0.6 mmol of **4** in dry toluene (10 mL) was heated to reflux under a dry nitrogen atmosphere. To this was added dropwise a mixture of Bu₃SnH (209 mg, 0.72 mmol) and a catalytic amount of AIBN in dry toluene, and the mixture was refluxed for 1 h, with monitoring by TLC. The toluene in the reaction mixture was evaporated in vacuum, and the crude product was chromatographed (silica gel column) using 7:3 EtOAc-hexane to yield **5** in about 80% yield. Recrystallization was done in dry MeOH gave single crystals: mp 114–116 °C; [α]_D²⁹ + 99.4° (c 0.767, CH₂Cl₂); IR (cm⁻¹): 3040, 2976, 2944, 2864, 1449, 1385, 1366, 1292, 1136, 1100, 691; ¹H NMR: δ 1.20 (d, 3 H, CH₃, J 6.35 Hz), 3.47 (m, 1 H, H-5), 4.0

(d, 1 H, H-4), 4.2–4.3 (m, 1 H, H-6a, 6b), 5.4 (s, 1 H, benzylidene H), 5.59 (d, 1 H, H-2), 5.83 (d, 1 H, H-3), 7.25–7.38 (m, 5 H, Ph–); 13 C NMR: δ 21.90, 70.01, 71.81, 72.66, 75.90, 97.00, 102.40, 127.08, 127.20, 128.60, 129.20, 133.14, 138.6; EIMS: Anal. Calcd for $C_{14}H_{16}O_3$, 232.11; Found: m/z 232 [M], 188, 149, 126, 105, 83, 77, 55, 43.

X-ray crystallography.—Well-grown single crystals of appropriate size were selected for structure determination. The cell dimensions were obtained by the method of short vectors, followed by least-squares refinement of the 25 reflections collected through search routine. The intensity data were collected at room temperature on an Enraf-Nonius CAD4 diffractometer. The data were corrected for Lorentz and polarisation effects, and an absorption correction was applied on the basis of ψ -scans. The structures were solved by direct methods (SHELXS97),13 and full matrix leastsquares refinement was carried out using the program, SHELX-97.14 Hydrogen atom positions were fixed on geometrically calculated positions (after verifying these positions through a difference Fourier map) and were allowed to ride on their respective carrier atoms. The thermal parameters of the nonhydrogen atoms were anisotropically refined. The final convergence was achieved with R = 0.0451 and 0.0614, respectively, for 4 and 5.

2. Supplementary material

The full crystallographic details of compounds 4 and 5 have been deposited (deposition numbers: 191424 and 191425) with Cambridge Crystallographic Data Centre. These data can be obtained, on request from The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; (fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk; www: http://www.ccdc.cam.ac.uk).

Acknowledgements

The authors thank Dr K. Vijayakumaran for useful discussions and CSIR, New Delhi for funding.

References

- Smith A. B., III; Zhung L.; Brook C. S.; Boldi A. M.; McBriar M. D.; Moser W. H.; Murase N.; Nakayama K.; Verhoest P. R.; Lin Q. Tetrahedron Lett. 1997, 38, 8667–8674.
- Du Y.; Linhardt R. J.; Vlahov I. R. Tetrahedron 1998, 58, 9913–9959.
- 3. Booma C.; Balasubramanian K. K. *Tetrahedron Lett.* **1992**, *33*, 3049–3052.
- 4. Descotes G. J. Carbohydr. Chem. 1988, 7, 1-20.

- 5. Thiem J.; Klaffke W. Top. Curr. Chem. 1990, 154, 285-332.
- Cousins G. S.; Hoberg J. O. Chem. Soc. Rev. 2000, 29, 165–174.
- 7. Fernandez-Megia E.; Ley S. V.; Nelly G.; Rowlands G. J. *Synlett* 1998, 991–994.
- 8. Beyer J.; Skaanderup P. R.; Madsen R. J. Am. Chem. Soc. **2000**, 122, 9575–9583.
- Gurjar M. K.; Chakrabarti A; Rao B. V.; Kumar P. Tetrahedron Lett. 1997, 38, 6885–6888.
- 10. Bhagavathy, S.; Balasubramanian, K. K. Abstract Papers,
- 221st National Meeting of the American Chemical Society, San Diego, CA, 2001, CARB-80.
- 11. Lemieux R. U.; Fraga E.; Watanabe K. A. Can. J. Chem. **1968**, 46, 61–69.
- 12. Ramana C. V.; Murali R.; Nagarajan M. J. Org. Chem. **1997**, 62, 7694–7703.
- Sheldrick G. M. Acta Crystallogr., Sect. A 1990, 46, 467–473.
- 14. Sheldrick, G. M. SHELXS97, University of Göttingen, Göttingen, Germany, 1997.